If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7w^2+4w-6=0
a = 7; b = 4; c = -6;
Δ = b2-4ac
Δ = 42-4·7·(-6)
Δ = 184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{184}=\sqrt{4*46}=\sqrt{4}*\sqrt{46}=2\sqrt{46}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{46}}{2*7}=\frac{-4-2\sqrt{46}}{14} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{46}}{2*7}=\frac{-4+2\sqrt{46}}{14} $
| x+3/2=0.375 | | 4x-2=180+40× | | 3x =10 | | 15=0.078x-1.79 | | 4x-2=180+2 | | 15=0.078x+1.79 | | 34=5x-7(2-x) | | 3x+14=2(5x-21) | | -0.8a-1.9=-8.3 | | 0.68y=y5/2y | | X^2+2x+482=0 | | -4(x+4)=5x-34 | | 6(x+1)=4(1+1/3x)+6+3x | | -5w-2=2(w+6) | | 1/5x-9/10x=25-53 | | (x+1)3−(x−1)3=8x | | -9(u+1)=-5u-45 | | x+3/8=3/8 | | x^-12x+40=0 | | 5.2=7.1z-6.1+7.8 | | -2v-14=3(v-3) | | 2(x−4)+6=8(x+7) | | 8n+4=3n | | 6n2-19n+10=0 | | .9+4.1=3.3x-2.3x-4.3 | | -3v+3=9 | | 5(x-1)-1=-26 | | 4x+13=3x+9 | | -16^2+16t+96=0 | | 5(2w+1)=-7 | | 5(x+1)-1=-26 | | 3-3=9x+4x |